Licence de Mathématiques. Université d'Artois. Durée 4h 21 Mai 2007.

Examen INTÉGRATION

Les calculatrices et les documents sont interdits. La rédaction sera prise en compte dans la notation.

Question de cours. (1,5 points)

Rappeler quelle est la loi d'une variable aléatoire gaussienne. Quelle est son espérance, quelle est sa variance? (on ne demande pas de refaire les calculs).

Exercice 1. (2,5 points)

Soient a, b, c > 0. Calculer le volume (dans \mathbb{R}^3) de l'ellipsoide d'équation

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} \le 1$$

Exercise 2. (8 points=1,5+(1+1,5)+(0,5+2)+0,5+1)

Pour
$$t \in \mathbb{R}^+ = [0, +\infty[$$
, on pose $f(t) = \int_0^{+\infty} \frac{\sin x}{x} e^{-tx} dx$.

1) Montrer que f est effectivement bien définie sur \mathbb{R}^+ .

2)a) Montrer que pour tout
$$t \in \mathbb{R}^+$$
, $f(t) = \int_0^{+\infty} \frac{1 - \cos x}{x^2} (1 + tx) e^{-tx} dx$.

b) Montrer que f est continue sur \mathbb{R}^+ . Indication: observer que $u \mapsto (u+1) e^{-u}$ borné sur \mathbb{R}^+ .

3) a) Justifier que pour tout
$$x > 0$$
, on a $\frac{\sin x}{x} = \int_0^1 \cos(xy) \ dy$.

b) En déduire que pour tout
$$t > 0$$
, on a $f(t) = \arctan(\frac{1}{t})$.

4) En déduire la valeur de
$$\int_{0}^{+\infty} \frac{\sin x}{x} dx$$
.

5) En déduire la valeur de
$$\int_{0}^{+\infty} \left(\frac{\sin x}{x}\right)^{2} dx$$
.

Exercice 3. (2 points)

Calculer
$$\lim_{n \to +\infty} \int_0^{+\infty} \frac{(\cos x)^n}{1+x^2} dx$$
.

Exercice 4. (4 points=1+1,5+1,5)

Soit $(\Omega, \mathcal{A}, \mu)$ un espace mesuré. Soient (f_n) une suite de fonctions mesurables et f mesurable. On dit que (f_n) converge en mesure vers f si pour tout $\varepsilon > 0$, on a

$$\mu(\lbrace x \in \Omega | |f_n(x) - f(x)| \ge \varepsilon \rbrace) \longrightarrow 0 \text{ quand } n \to \infty.$$

1) On suppose les fonctions f_n et f intégrables. Montrer que si $||f_n - f||_1 \to 0$, alors (f_n) converge en mesure vers f.

On suppose maintenant que μ est une mesure <u>finie</u>.

- 2)a) Montrer que si une suite de fonctions mesurables (f_n) converge simplement vers f, alors (f_n) converge en mesure vers f. Indication: utiliser une fonction indicatrice.
- b) On considère la mesure de Lebesgue sur \mathbb{R}^+ et f_n la fonction indicatrice de [n, n+1[. Est-ce que (f_n) converge simplement? Est-ce que (f_n) converge en mesure? Préciser les limites éventuelles.

Exercise 5. (5 points=
$$1+(1+1)+1,5+0,5$$
)

Soient $\rho_n \in \mathbb{R}^+$ et $\theta_n \in \mathbb{R}$. On notera λ la mesure de Lebesgue sur [0,1]. On suppose que $\lim_{n \to +\infty} \rho_n \sin(2\pi nx + \theta_n) = 0$ pour tout x appartenant à un borélien $E \subset [0,1]$ tel que $\lambda(E) > 0$. On fixe $\varepsilon > 0$ et on note, pour $N \in \mathbb{N}$:

$$A_N = \{ x \in [0, 1] | \forall n \ge N, |\rho_n \sin(2\pi nx + \theta_n)| \le \varepsilon \}.$$

- 1) Justifier que pour tout $N \in \mathbb{N}$, A_N est un borélien et montrer qu'il existe $N_0 \in \mathbb{N}$ tel que $\lambda(A_{N_0}) > 0$.
 - 2)a) Montrer que pour tout $n \geq N_0$, on a: $\rho_n \int_{A_{N_0}} (\sin(2\pi nx + \theta_n))^2 dx \leq \varepsilon \lambda(A_{N_0})$.
 - b) En déduire que pour tout $n \geq N_0$, on a

$$\frac{\rho_n}{2} \left[\lambda(A_{N_0}) + \sin(\theta_n) \int_{A_{N_0}} \sin(4\pi nx) \, dx - \cos(\theta_n) \int_{A_{N_0}} \cos(4\pi nx) \, dx \right] \le \varepsilon \lambda(A_{N_0}).$$

- 3) Justifier que $\lim_{n\to+\infty}\int_{A_{N_0}}\cos(4\pi nx)\,dx = \lim_{n\to+\infty}\int_{A_{N_0}}\sin(4\pi nx)\,dx = 0.$
- 4) Conclure que $\lim_{n\to+\infty} \rho_n = 0$.