Examen - Session 1 ANALYSE 1

Les calculatrices et les documents sont interdits. La rédaction sera prise en compte dans la notation.

Cours (11 points)

- 1) Soit $E \subset \mathbb{R}$. Définition de "E est dense dans \mathbb{R} ":
- 2) a) Ecrire la définition de $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .
- b) Soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels convergente vers ℓ . Montrer que toute sous-suite converge aussi vers ℓ .
 - 3) a) Donner la définition d'une suite de Cauchy.
 - b) Montrer que toute suite convergente est une suite de Cauchy.
 - c) Quel résultat remarquable a-t-on à propos des suites de Cauchy de réels ? ¹
 - 4) Montrer que toute suite croissante majorée converge.
 - 5) Enoncer le théorème de Bolzano-Weierstrass.
 - 6) Soient K un segment et $f: K \to \mathbb{R}$ une application.
 - a) Ecrire avec des quantificateurs ce que signifie f continue en tout point de K.
 - b) Ecrire avec des quantificateurs ce que signifie f uniformément continue.
 - c) Ecrire la négation de "f uniformément continue".
 - d) Enoncer le théorème de Heine.
 - e) Montrer ce résultat.

Exercice 1 (2 points)

Soient $\alpha, \beta \in \mathbb{R}$ avec $\alpha < \beta$. Soit $f : [\alpha, \beta] \to [\alpha, \beta]$ continue. Montrer qu'il existe $c \in [\alpha, \beta]$ tel que f(c) = c.

Indication: considérer $\Delta(x) = x - f(x)$.

¹Pas de preuve demandée

Exercice 2 (5 points

- 1) On veut démontrer le résultat du cours : \mathbb{Q} est dense dans \mathbb{R} . On admet qu'il suffit de montrer que dans tout intervalle [a,b] où 0 < a < b, on peut trouver un rationnel. On se donne donc un tel intervalle.
 - a) Justifier qu'il existe un entier $q \geqslant 1$ tel que $\frac{1}{q} < b a$.
 - b) Justifier que $p = \min \{k \in \mathbb{N} \mid k \ge aq\}$ existe et que $p \ge 1$.
 - c) Conclure que $\frac{p}{q} \in [a, b]$.
 - 2) Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction continue surjective.
- (i) On considère D une partie dense dans \mathbb{R} . Montrer que $f(D)=\{f(x)\mid x\in D\}$ est dense dans \mathbb{R} .
 - (ii) Montrer que $\left\{\frac{p^3}{q^3} \mid p, q \in \mathbb{Z}, q \neq 0\right\}$ est dense dans \mathbb{R} .

Exercice 3 (3 points)

On veut démontrer "Cesàro": soit $(x_n)_{n\in\mathbb{N}}$ une suite de réels qui converge vers ℓ . On considère la suite définie par

$$\gamma_n = \frac{1}{n+1} \sum_{k=0}^n x_k$$
, où $n \in \mathbb{N}$.

On veut montrer que $(\gamma_n)_{n\in\mathbb{N}}$ converge aussi vers ℓ . On se donne $\varepsilon>0$.

1) Montrer qu'il existe un entier $n_0 \ge 1$ tel que pour $n \ge n_0$, on a

$$\left|\gamma_n - \ell\right| \leqslant \frac{1}{n+1} \left(\sum_{k=0}^{n_0-1} |x_k - \ell|\right) + \varepsilon.$$

2) Conclure.