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Abstract

We first prove a localization principle characterising Lust-Piquard sets. We
obtain that the union of two Lust-Piquard sets is a Lust-Piquard set, provided that
one of these two sets is closed for the Bohr topology. We also show that the closure
of the set of prime numbers is a Lust-Piquard set, generalizing results of Lust-
Piquard and Meyer, and even that the set of integers whose expansion uses less
than r factors is a Lust-Piquard set. On the other hand, we use random methods
to prove that there are some sets which are UC, Λ(q) for every q > 2 and p-Sidon
for every p > 1, but which are not Lust-Piquard sets. This is a consequence of the
fact that a uniformly distributed set cannot be a Lust-Piquard set.
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Introduction
In this paper, we are interested in constructing some new Lust-Piquard sets (LP sets

in short) and some new non LP sets. One of the main application involves the set of
prime numbers.

Let G be compact abelian group. The Haar measure m defines an invariant mean on
L∞(G), and Rudin ([17]) showed that, if G is infinite, there always exist other invariant
means on L∞(G). A function f ∈ L∞(G) has a unique invariant mean if M(f) =

∫
f dm

for every invariant mean M on L∞(G). Every continuous function has a unique invariant
mean. The same is true for every Riemann-integrable function; but they are not the only
ones. Indeed there are non Riemann-integrable functions f such that fg has an unique
invariant mean, for every continuous function g ∈ C(G) (see [18]).

Using the terminology of Harmonic Analysis, Lust-Piquard sets is a class of, what are
called “thin” sets. That is, subsets Λ of the dual group Γ = Ĝ, where the functions whose
Fourier transform is supported by Λ have a particular behaviour. Lust-Piquard sets Λ are
defined by the property that, fg has a unique invariant mean, for every g ∈ C(G), and
every f ∈ L∞(G) with f̂ supported by Λ.

Mainly we will be working in the case where G = T is the torus, and then its dual
group is identified with the set of integers Z. In this setting, it was proved in [15] that N
is not a LP set. On the other hand, a (non trivial) example of LP set is given in [12] with
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the set P ∩ (2 + 5Z), where P are the prime numbers. This example is non trivial in the
sense that the set is not a Rosenthal set (see the definition below). Another example of
a LP set, which is not Rosenthal, is given in [5]: there, it is given a set which is discrete
for the Bohr topology of Z and also a Hilbert set. It seems that the main references on
the subject before the 90’s are [11], [12], [15] and [17]. In [8], Li proved that LP sets are
Riesz sets (see the def. below). This result was recently extended by the authors in [6],
where they prove that the union of a Riesz set and a LP set is a Riesz set. This allows to
recover that N is not a LP set.

In the first section of this paper, we prove a general criterion for LP sets. It is an
extension of the classical localization principle due to Lust-Piquard in [12]. We are led
to introduce the notion of strong LP set. It has to be linked with the notion of strong
Riesz set, introduced by Meyer [13] to prove that the union of a strong Riesz set and a
Riesz set is a Riesz set. Note that the union of two Riesz set is not a Riesz set in general:
Z = Z− ∪N. It is unknown whether the union of two LP sets is still a LP set, but we can
(positively) conclude when one is a strong LP set. There are some LP sets, which are not
strong LP: for instance a Rosenthal set, dense for the Bohr topology, is constructed in
[6]. Actually, the (so far) known examples of LP sets are either Rosenthal sets or discrete
sets, for the Bohr topology. We obtain some new examples of LP sets which are neither
Rosenthal sets nor discrete. For instance, it turns out that the set of prime numbers is a
strong LP set and it gives us an example of LP set of different nature, compared to the
previous known examples. We extend this result, showing that the set of integers whose
expansion with prime numbers uses less than r factors is a strong LP set, where r ≥ 1 is
fixed but arbitrary.

In the second section, we construct some new non LP sets. The random selector
method gives some sets which are uniformly distributed (hence dense for the Bohr topol-
ogy) and thin in the sense that they are Λ(s) for every s > 1 and p-Sidon for every p > 1.
We show that a uniformly distributed set cannot be a LP set. In this way, we obtain thin
sets in the previous sense, which are not LP sets. We also investigate the structure of the
space CΛ(T) for such a Λ.

Notations
Let us recall some notations and definitions of the classes of thin sets involved in the

paper. Throughout this paper, G will be a compact abelian group (with additive law),
and Γ = Ĝ will be its (discrete) dual group. The Haar measure of G will be denoted by
m, and integration with respect to m by dt or dx. We will denote by M(G) the space
of complex Radon measures on G. For f ∈ L1(G), (or even for µ ∈ M(G)) the Fourier
coefficient of f (µ) at γ ∈ Γ is f̂(γ) =

∫
G f(t) γ(t) dt (µ̂(γ) =

∫
G γ dµ).

If X is a linear subspace of M(G), XΛ will be the subspace of those f ∈ X whose
Fourier coefficients vanish outside of Λ. If x ∈ G, and f is a function defined on G, we
denote by fx the translate of f by x, that is the function defined by fx(t) = f(t− x), for
every t ∈ G.

An invariant mean M on L∞(G) is a continuous linear functional on L∞(G) such that
M(1I) = ‖M‖ = 1 and M(fx) = M(f), for every f ∈ L∞(G) and every x ∈ G. Clearly
every invariant mean is a positive functional on L∞(G).

A subset Λ of Γ = Ĝ is called a Lust-Piquard set (LP set) if γf has a unique invariant
mean for every f ∈ L∞

Λ (G) and every γ ∈ Γ. This is equivalent to say that fg has a
unique invariant mean for every f ∈ L∞

Λ (G) and every g ∈ C(G). In [11], Lust-Piquard
called these sets totally ergodic sets. In [5], the new terminology is introduced and we
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explain there why we do so. We introduce now the concept of strong LP set.

Definitions.
We will say that a LP set is a strong LP set if its closure in Γ for the Bohr topology

is still a LP set.

We finish this introduction recalling the definitions of Riesz sets and Rosenthal sets.

A subset Λ of Γ is called a Riesz set if every measure whose Fourier transform vanishes
out of Λ is absolutely continuous with respect to the Haar measure. That is, if we have
MΛ(G) = L1

Λ(G).

A subset Λ of Γ is called a Rosenthal set if every f ∈ L∞(G) whose Fourier transform
vanishes out of Λ is equal (a.e.) to a continuous function. That is, if we have L∞

Λ (G) =
CΛ(G).

The classical theorem of the Riesz brothers states that the set of positive integers is a
Riesz set. We have the following implications

Λ is a Rosenthal set =⇒ Λ is a LP set =⇒ Λ is a Riesz set.

As already signalled, the second one is due to Li [8], and the first one is clear.

1 Some new LP sets

Let us recall that the Bohr topology of a discrete abelian group Γ is the topology of
pointwise convergence, when Γ is seen as a subset of C(G); it is also the natural topology
on Γ as a subset of the dual group of Gd, the group G with the discrete topology. See [16]
for more informations.

We are going to prove the following criterion, which can be viewed as a restricted
localization property for the class of LP sets (see the remark below).

Theorem 1.
Let Λ be a subset of Γ. We assume that there exists a subset E of Λ, such that E is a

LP set and for every γ /∈ E, there exists a LP set Lγ such that γ /∈ Λ \ Lγ. Then Λ is a
LP set.

Remark: note that the condition on Γ \ E actually means that for every γ /∈ E, there
exists a neighborhood Vγ of γ (for the Bohr topology), such that Lγ = Vγ ∩Λ is a LP set.
The converse of Theorem 1 is obviously true (take E = ∅ and Lγ = Λ).

This is a generalization of the following localization criterion, implicitely contained in
[12] (see [5] too): if for every γ ∈ Γ, there exists a neighborhood Vγ of γ such that Vγ ∩Λ
is a LP set, then Λ is a LP set. In particular, every discrete subset of Γ is a LP set.

For the proof of Theorem 1, we need the following lemma.

Lemma 1. Let f ∈ L∞(G) and M be an invariant mean.
Then there exists some F ∈ L∞(G) such that for every γ ∈ Γ, F̂ (γ) = M(γ̄f) and

‖F‖∞ ≤ ‖f‖∞.

Proof. Let us first suppose that G is metrizable. Fix a function f ∈ L∞(G) and M
an invariant mean. Let (Kn)n≥1 be a polynomial approximation of the unit in L1(G) :
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‖Kn‖1 = 1 and for every γ ∈ Γ, lim
n

K̂n(γ) = 1. Moreover, Kn is a positive trigonometric

polynomial. We shall use the notation Ǩn(t) = Kn(−t).
Now, for every x ∈ G and every n ≥ 1, we have (note that the sums are actually

finite) using the properties of M ,∣∣∣∑
Γ

K̂n(γ)M(γ̄f)γ(x)
∣∣∣ =

∣∣∣M(∑
Γ

fK̂n(γ)γ(x)γ̄
)∣∣∣ ≤ M

(
|f |

∣∣∣∑
Γ

K̂n(γ)γ(x)γ̄
∣∣∣).

It means ∣∣∣∑
Γ

K̂n(γ)M(γ̄f)γ(x)
∣∣∣ ≤ M(|f |.(Ǩn)−x).

Almost everywhere, we have |f |.|(Ǩn)−x| ≤ ‖f ||∞|(Ǩn)−x|. Therefore, as Kn is con-
tinuous,∣∣∣∑

Γ

K̂n(γ)M(γ̄f)γ(x)
∣∣∣ ≤ ‖f‖∞M((Ǩn)−x) = ‖f‖∞M(Ǩn) = ‖f‖∞̂̌

Kn(0) ≤ ‖f‖∞.

Now, we have a sequence
( ∑

Γ K̂n(γ)M(γ̄f)γ
)

n∈N
in L∞(G), bounded by ‖f‖∞. By

weak-star compactness, there exists some F ∈ L∞(G), with ‖F‖∞ ≤ ‖f‖∞ and such that
F̂ (γ) = lim

n
K̂n(γ)M(γ̄f) = M(γ̄f).

If G is not metrizable we can use, instead of the sequence (Kn)n≥1, a net (Kδ)δ∈D (D
could be for instance the directed set of neighbourhoods of 0) and the proof still works.

Observe that one can show that F has its spectrum contained in Λ when f has its
spectrum contained in Λ and Λ is closed for the Bohr topology (see the proof below).
Nevertheless, we are not going to use this.

Proof of Theorem 1.
We fix f ∈ L∞

Λ (G) and an invariant mean M . By lemma 1, a function F ∈ L∞(G) is
associated.

Let γ /∈ E. By hypothesis, we are given a LP set Lγ and a discrete measure σ such
that σ̂ = 0 on Λ \Lγ and σ̂(γ) = 1. Denoting the Dirac measure in x by δx, we may write
σ =

∑
n

snδxn , for some xn ∈ G, with
∑
n

|sn| finite. Note that 1 = σ̂(γ) =
∑
n

snγ̄(xn).

We have F̂ (γ) = M(γ̄f) =
∑
n

snγ̄(xn)M((γ̄f)xn), because M is an invariant mean.

By continuity of M , this leads to

F̂ (γ) = M
(∑

n

snγ̄fxn

)
= M(γ̄(f ∗ σ)).

But f ∗ σ lies in L∞
Lγ

(G) and Lγ is a LP set, so

F̂ (γ) = ̂f ∗ σ(γ) = f̂(γ).

It implies that F ∈ L∞
Λ (G). Thus, for every γ ∈ Λ \ E, F̂ (γ) = f̂(γ).

Now, we write F0 = f . By the preceding, there exists F1 ∈ L∞
Λ (G) such that for every

γ ∈ Λ \ E, F̂1(γ) = F̂0(γ), and for every γ ∈ E, F̂1(γ) = M(γ̄F0). Moreover, we have
‖F1‖∞ ≤ ‖F0‖∞. By induction, we construct a sequence (Fn)n∈N in L∞

Λ (G), with
· ‖Fn+1‖∞ ≤ ‖Fn‖∞.
· For every γ ∈ E, F̂n+1(γ) = M(γ̄Fn).
· For every γ ∈ Λ \ E, F̂n+1(γ) = F̂n(γ).
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It is worth pointing out that Fn+1 − Fn lies in L∞
E (G). So for every γ ∈ Γ,

M(γ̄Fn+1)−M(γ̄Fn) = M(γ̄(Fn+1 − Fn)) = ̂(Fn+1 − Fn)(γ) = M(γ̄Fn)−M(γ̄Fn−1)

because E is a LP set.
By induction, M(γ̄Fn+1)−M(γ̄Fn) = ̂(F1 − F0)(γ) = M(γ̄f)− f̂(γ).

Thus, fixing γ ∈ Γ, the sequence
(
M(γ̄Fn)

)
n∈N

is an arithmetical sequence, which

is bounded by ‖Fn‖∞ ≤ ‖f‖∞. Then, it is a constant sequence. This implies that
M(γ̄f)− f̂(γ) = 0.

We apply this theorem in two “opposite” ways.
First, we are going to choose a uniform “big” Lγ. This gives a positive answer to the

union problem for LP sets, provided one is closed for the Bohr topology.

Theorem 2. Let E ′ be a LP set and E be a strong LP set. Then Λ = E ∪E ′ is a LP set.

Note that there are some LP sets which are not strong LP. Indeed, in [6], we construct
some Rosenthal sets (a fortiori LP set), which are dense for the Bohr topology.

Proof. As a subset of a LP set is a LP set, we may (and do) suppose that E and E ′

are disjoint and that E is closed for the Bohr topology.
It suffices to apply Theorem 1, where Lγ = E ′. Then for every γ /∈ E, γ does not

belong to E = Ē = Λ \ E ′.

In the following corollary of Theorem 1, the set Lγ is as thin as possible.

Proposition 1. Let Λ be a closed subset of Γ. We assume that Λ = E ∪ E ′, where E is
a LP set and for every γ ∈ E ′, we have γ /∈ Λ \ {γ}.
Then

Λ is a strong LP set.

Remark: the condition on E ′ actually means that E ′ is a discrete subset of Λ, equipped
with the induced topology: for every γ ∈ E ′, there exists a neighborhood Vγ of γ, such
that Vγ ∩ Λ = {γ}.

Proof. First for every γ /∈ Λ, γ /∈ Λ. Thus, a singleton is trivially a LP set, Theorem
1 implies that Λ is a LP set. As Λ is closed, it is a strong LP set.

Now, we are going to apply Theorem 1 to the set of prime numbers (actually, this is
only a first step and we shall strengthen later the following theorem). Recall that in the
framework of integers, a family of (clopen) neighborhood of n0 ∈ Z is given by n0 + qZ,
where q ≥ 1. Concerning the set P of prime numbers, it is well known, and easy to check,
that Λ = P ∪ {−1, +1} is closed for the Bohr topology and that, more generally, every
subset of Λ containing {−1, +1} is closed for the Bohr topology (see [3] for instance).
Actually, we cannot avoid adding −1 and +1: these are cluster points for P (this is not
trivial and relies on a generalization, due to Schinzel, of a result of Vinogradov: see [4]).
Point out that the reason why Lust-Piquard considered P ∩ (2 + 5Z) in her work was to
avoid the difficulty due to −1 and +1 (and this set was sufficient to construct her striking
example): P ∩ (2 + 5Z) is discrete for the Bohr topology. Here, thanks to Theorem 1, we
are able to surround this problem because {−1, +1} is finite. Nevertheless, in this paper,
we never need to know the fact that −1 and +1 are cluster points for P .
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Theorem 3. The set P of prime numbers is a strong LP set.

Proof. It suffices to apply the preceding proposition with E = {−1, +1} and E ′ = P
to conclude that Λ is a strong LP set.

Remark. Actually, applying Theorem 2, we obtain that the union of the prime
numbers with any LP set is still a LP set. Let us point out too that Theorem 3 generalizes
the fact that the prime numbers is a strong Riesz set (see [13]). In the sequel, we are
going to strongly generalize this.

We need to precise some notations: we shall write, as usual, that k |n when n = kq
for some q, where n, k, q are integers. We shall write that k |/ n when it does not hold. At
last, for n ∈ Z, with n 6= 0, and p ∈ P : αp(n) = max{a ∈ N; pa |n}, so that

n = ε
∏
p∈P

pαp(n) where ε ∈ {−1, 1}.

Theorem 4. Let r ≥ 1, the set Fr = {n ∈ Z \ {0}| card{p ∈ P|αp(n) 6= 0} ≤ r} is a
closed LP set.

Roughly speaking, Fr is the set of integers whose decomposition with prime numbers
uses at most r factors. The proof uses several lemmas. The two following ones are inspired
from [2].

Lemma 2. The set A = {n ∈ Z \ {0}| p ∈ P , |k| ≥ 2, p |n and k |n ⇒ p |/ k + 1} is a
closed LP set.

We have 0 /∈ A and −1, 1 ∈ A.
Proof. First 0 /∈ A. Indeed, 6Z ⊂ Z \ A because when n ∈ 6Z, we have 2 |n and

3 |n so n /∈ A. Now, let n /∈ A with |n| ≥ 2. There exists some p ∈ P and k ∈ Z, where
|k| ≥ 2, with p |n and k |n and p | k + 1. It is then easy to check that n + pkZ ⊂ Z \ A.
So A is closed for the Bohr topology.

We are going to use Proposition 1. The set {−1, 1} is trivially a LP set. Now, fix a ∈
A\{−1, 1}. We claim that (a+3a2Z)∩(A\{a}) = ∅. Indeed, if s ∈ (a+3a2Z)∩(A\{a}),
then s = a(1 + 3az) where z ∈ Z \ {0}. As |a| ≥ 2, there exists some p ∈ P such that
p | a, so p | s. As |1 + 3az| ≥ 2 and s ∈ A, we have p |/ (−1 − 3az) + 1 = 3az. This is a
contradiction.

Lemma 3. The set F1 = { ± pα| p ∈ P , α ∈ N} is a strong LP set.

Proof. It is sufficient to notice that F1 ⊂ A: suppose that, for some q ∈ P and some
k ∈ Z with |k| ≥ 2, we have q | pα and k | pα, where p ∈ P and α ∈ N. Then q = p and
k = εpβ with 1 ≤ β ≤ α and ε ∈ {−1, 1}. So we cannot have q | k + 1.

Lemma 4. Let λ ∈ Z.
i) If Λ ⊂ Z is a LP set, then λ.Λ is a LP set.
ii) If Λ ⊂ Z is closed, then λ.Λ is closed.

Proof. The case λ = 0 is trivial. We assume that |λ| ≥ 1.
i) For g ∈ L∞(T), we define gλ ∈ L∞(T) by gλ(x) = g(λx). When M is an invariant

mean on L∞(T), the functional M̃(g) = M(gλ) is an invariant mean as well. Now, for
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every f ∈ L∞
λΛ(T), we have f = gλ for some g ∈ L∞

Λ (T). When n ∈ λZ i.e. n = λk, this
implies that

M(enf) = M̃(ekg) = ĝ(k) = f̂(n)

because Λ is a LP set.
When n /∈ λZ, M(enf) = 0 = f̂(n) because λZ is closed.
ii) It is a straightforward argument and left to the reader.

Lemma 5. The set Fr is closed.

Proof. 0 /∈ Fr. Indeed take p1, . . . , pr+1 the first r + 1 prime numbers. Then
p1 · · · pr+1Z ∩ Fr = ∅.

Let N /∈ Fr with |N | ≥ 2. The decomposition of N uses at least r + 1 prime factors.
So NZ ∩ Fr = ∅.

Let us point out that the points −1 and 1 are cluster points for Fr, because they are
already cluster points for P .

Proof of Theorem 4. The closeness was proved in the preceding lemma. We prove
by induction that Fr is a LP set. The case r = 1 was proved in Lemma 3.

Suppose now that Fr is a LP set. We already know that Fr+1 is closed. Fix γ ∈
Fr+1 \Fr. We can write γ = εqα1

1 · · · qαr+1

r+1 , where q1, . . . , qr+1 are distincts prime numbers,
ε = ±1 and αj ≥ 1. We introduce the set: Lγ = qα1

1 .Fr. By Lemma 4., it is a LP set.
We claim that γ /∈ Fr+1 \ Lγ. We are going to check that (γ + γ2Z)∩ (Fr+1 \Lγ) = ∅.

Indeed, suppose that γ′ ∈ (γ + γ2Z) ∩ (Fr+1 \ Lγ), then γ′ = γ(1 + γz) where z ∈ Z.

As γ | γ′ and γ′ ∈ Fr+1, we have γ′ = ε′q
α′1
1 · · · qα′r+1

r+1 with ε′ = ±1 and αj ≤ α′
j for each

j ∈ {1, . . . , r + 1}. But if α′
1 > α1, then q1 | γ′

γ
= 1 + γz. As q1 | γ, we would have a

contradiction. This yields α′
1 = α1. We conclude that γ′ ∈ Lγ, which is a contradiction

and the claim is proved.
Applying Theorem 1, Fr+1 is a LP set.

Remarks.
i) Actually, applying Theorem 2, we obtain that the union of Fr with any LP set is

still a LP set. We would like to mention that this implies that the union of the preceeding
set with any Riesz set is a Riesz set, thanks to the main result of [6]. It seems that even
this application to Riesz sets was unknown.

ii) On the other hand, as previously claimed in the introduction, we obtain some
new kinds of LP sets: neither Rosenthal sets, neither discrete. We precise now several
examples. A first example is given by the set of prime numbers itself: using the fact
(proved in [4]) that −1 and 1 are cluster points, this is not a discrete set, Lust-Piquard
[12] proved that P is not a Rosenthal set. Another example is given by E1∪E2, where E1

is the Rosenthal set, dense for the Bohr topology, constructed in [6] and E2 is the discrete
Hilbert set (hence not Rosenthal set) constructed in [5]. The set E2 is a strong LP sets
and Theorem 2 applies.
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2 Some new non-LP sets

In this section, we investigate the links between the class of LP sets and other classical
classes of thin sets in harmonic analysis. Let us recall some definitions. As we are going
to focus our work on the Torus, we only precise the definitions in this framework (even
if, obviously, the notions extend). We shall denote by T the space of trigonometric
polynomials.
Definition. Let 1 ≤ p < 2 and Λ a subset of Z. Λ is a p-Sidon set if there exists a
constant C > 0 such that for any f in TΛ,

(
∑
λ∈Λ

|f̂(λ)|p)1/p ≤ C‖f‖∞

For p = 1, this is in fact the notion of Sidon set.

Definition. A subset Λ of Z is a set of uniform convergence (UC set in short) if for all
f ∈ CΛ(T), (SNf)N≥0 converges to f in CΛ(T), where SNf =

∑
|n|≤N

f̂(n)en.

Definition. Let 1 ≤ p < ∞ and let A be a subset of Z. A is a Λ(p) set if there exists
q ∈]0, p[ such that the norms ‖.‖p and ‖.‖q are equivalent on TA.

We recall that, if A is a Λ(1) set, there is some p > 1 such that A is a Λ(p) set. Thus,
A is a Λ(1) set if and only if L1

A(G) is a reflexive space.

The original example of Rosenthal [14] of a non trivial Rosenthal set (hence LP set)
contains arbitrarily large arithmetical progressions. Then, it is neither a UC set, nor a
p-Sidon, nor a Λ(r) set, for any p ∈ [1, 2[ and r ≥ 1. We are going to construct some
non-LP sets which are UC, p-Sidon (for every p > 1), Λ(r) set (for every r ≥ 1). Of
course, we cannot have a similar result with p = 1, because every Sidon set is a Rosenthal
set, hence a LP set.

We shall need the following lemma. There, the torus is viewed as (−1/2, 1/2).
Lemma 6. Let E be a subset of Z. We assume that for every ε ∈ (0, 1/2), there exist
fε ∈ CE(T) and hε ∈ C(T) with

. hε(0) = 1.

. hε(T) ⊂ [0, 1].

. hε(T \ (−ε, ε)) ⊂ [0, ε].

. ‖hε − fε‖∞ ≤ ε.
Then

E is not a LP set.

It would be easy to show that the set E has the property that CE(T) contains a
subspace isomorphic to c0. Indeed, it is easy to construct some αn and some εn such that
the series

∑
fεn(· − αn) is weakly unconditionally Cauchy and the sequence {fεn} is not

null. The classical Bessaga-Pe lczyński Theorem gives the conclusion. Actually, the trick
here is that this peak functions are very tightened.

Proof. Let (θn)N be a sequence of positive numbers such that c =
∑
n∈N

θn < 1/4. Let

D = {dn} be a dense countable subset of T.
We first construct an increasing sequence of integers (jn)N, a decreasing sequence of

positive numbers (εn)N and a sequence of open subset ωn of T, such that, for every n ∈ N:
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i) εn ≤ θn.
ii) ωn = {x ∈ T|Sn(x) > 1− c}.

iii) 0 ≤ Sn ≤ 2 +
n∑

k=1

θk.

iv) Sn(dj) > 1− c, for every j ∈ {1, . . . , jn}.

where Sn(x) =
n∑

k=0

hεk
(x− djk

).

The first step is clear (we take j1 = 1).
Suppose that the construction is made up to the step m. Obviously Sm is continuous.

ωm is then well defined.
Note that ‖Sm‖1 ≤

∑
n∈N

‖hεn‖1 ≤ 3
∑
n∈N

εn ≤ 3
∑
n∈N

θn = 3c. There exists some integer

n ≥ 1 such that Sm(dn) ≤ 1− c. Indeed, if not, with the density of D, this would imply
that Sm ≥ 1− c on the torus, so that 1− c ≤ ‖Sm‖1 ≤ 3c, which is impossible.

Therefore, we may define jm+1 as the least integer n ≥ 1 such that Sm(dn) ≤ 1 − c.
By (iv), we have jm+1 > jm.

There exists εm+1 ≤ θm+1 such that the open neighborhood ω̃m+1 = djm+1+(−εm+1, εm+1),
of djm+1 verifies ω̃m+1 ⊂ {x ∈ T|Sm(x) < 1}. Now, we have Sm+1 = Sm +hεm+1(·−djm+1).

If x ∈ ω̃m+1, then Sm+1(x) ≤ 2 ≤ 2 +
m+1∑
k=1

θk.

If x /∈ ω̃m+1, then Sm+1(x) ≤ Sm(x) + εm+1 ≤ 2 +
m+1∑
k=1

θk, thanks to the hypothesis on

the hε’s.
By induction, the construction is done.
Now, we define Ω =

⋃
n∈N

ωn. It is a dense open subset of T, because it contains D. The

main result of [17] provides us with an invariant mean M such that M(1IΩ) = 1.
It is worth pointing out that the sequence (Sn) is non-decreasing, uniformly bounded

by 2 + c and then converges pointwise to some S ∈ L∞. Observe that S is non-negative
and that for every n ∈ N, S|ωn ≥ Sn|ωn

≥ 1− c, hence S|Ω ≥ 1− c. We obtain that

M(S) ≥ M(S1IΩ) ≥ (1− c)M(1IΩ) = 1− c.

On the other hand,
Ŝ(0) ≤ ‖S‖1 ≤

∑
n∈N

‖hεn‖1 ≤ 3c.

Therefore
M(S) 6= Ŝ(0).

Now, for x ∈ T and n ∈ N, we define

Fn(x) =
n∑

k=0

fεk
(x− djk

).

We have Fn ∈ CE(T) and the sequence is bounded. Actually, (Fn − Sn) converges to
a continuous function because the series

∑
n∈N

‖fεn − hεn‖∞ is convergent.

Hence the sequence (Fn)n∈N is pointwise convergent to some function F in L∞
E (T).

Since F − S ∈ C(T),

M(F )−M(S) = M(F − S) = F̂ (0)− Ŝ(0).

This shows that M(F ) 6= F̂ (0) and the lemma is proved.
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Lemma 7. Let X be a (closed) subspace of C(T). The following assertions are equivalent:
i) For every ε > 0, there exist fε ∈ X and hε ∈ C(T) with
. hε(0) = 1.
. hε(T) ⊂ [0, 1].
. hε(T \ (−ε, ε)) ⊂ [0, ε].
. ‖hε − fε‖∞ ≤ ε.
ii) There exists a sequence (qn)n in the unit ball of X such that qn → 1I{0} everywhere.

Proof. If (i) is true, then (ii) is clearly true.
Now suppose that (ii) is true and fix ε > 0. We introduce the real part ρn and

the imaginary part In of qn. The sequences are in the unit ball of C(T). Obviously, ρn

converges everywhere to 1I{0} and In converges everywhere to 0. It means that In is weakly
convergent to 0 in the space C(T). By the Banach-Mazur Theorem, there exists some
disjoints finite sets of integers (En)n and some non-negative reals (aj)j∈En , with

∑
En

aj = 1,

such that ∑
j∈En

ajIj −→ 0 uniformly on T and min En −→∞.

We define Rn =
∑

j∈En

ajρj and gn =
∑

j∈En

ajqj ∈ X, we obviously have ‖gn−Rn‖∞ −→ 0.

Now, consider R+
n = max(Rn, 0) and R−

n = max(−Rn, 0). Of course, Rn = R+
n −

R−
n . As R−

n is pointwise convergent to 0 on T and lies in the unit ball of C(T), it
is weakly convergent to 0 in the space C(T). As previously, we can find some convex
combination uniformly convergent to 0 on T. Let Fn (resp. Hn) be the corresponding
convex combination of the gk (resp. R+

k ), with disjoint support tending to infinity. Fn

lies in the unit ball of X and we have ‖Fn −Hn‖∞ −→ 0, Hn(0) = 1 and for every t 6= 0:
Hn(t) −→ 0. Moreover, Hn is a non-negative function and Hn(T) ⊂ [0, 1].

The (bounded) sequence Hn is weakly convergent to 0 in the space C(T \ (−ε, ε)),
so there are some convex combination uniformly convergent to 0 on T \ (−ε, ε). Let hn

(resp. fn) be the corresponding convex combination of the Hk (resp. Fk). Choosing n
large enough to have both ‖fn − hn‖∞ ≤ ε and sup

T\(−ε,ε)

hn ≤ ε , the conclusion follows.

Definition. Λ ⊂ N is said to be uniformly distributed if

1

N + 1

N∑
j=0

e
λj
−→ 1I{0} everywhere,

where Λ = {λj|j ∈ N} and λ0 < λ1 < · · ·

As an immediate corollary of Lemmas 6 and 7, we obtain

Theorem 4. Let Λ ⊂ N. If Λ is uniformly distributed, then it is not a LP set.

Recall that a classical result of Vinogradov asserts that for every t /∈ Q, we have

1

N + 1

N∑
j=0

epj
(t) −→ 0

where P = {pj} is the set a prime numbers. Nevertheless P is not uniformly distributed:
first, it is not dense for the Bohr topology and moreover, we proved in the first part
that it is a LP set. This shows that the assumption in the preceding lemmas is sharp:
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for instance “everywhere” cannot be replaced by “almost everywhere” or “except on a
countable set”.

In [10], the authors proved that, almost surely, there are some subsets of N being a UC
set, a p-Sidon set for every p > 1, a Λ(p) set for every p ≥ 1 and uniformly distributed.
Let us precise the probability framework. The random method uses selectors (see Chap.
12 [9] to know more on this topic). We are going to use the same one than in [10]:

Let (ϕn)n≥10 be a sequence of independent random variables (on some probability

spave (Ω, P) taking values in {0, 1}, with expectation δn =
ln ( ln(n))

n
·

Then, for ω ∈ Ω, we define the set

Λω = {n ≥ 10|ϕn(ω) = 1} ⊂ N.

Combining the main result of [10] and Theorem 4, we obtain the following result

Theorem 5. Almost surely,
i) Λω is a UC set.
ii) Λω is a p-Sidon set for every p > 1.
iii) Λω is a Λ(p) set for every p ≥ 1.
iv) Λω is uniformly distributed.
v) Λω is not a LP set.

Thanks to the property (iv), the set Λ is dense for the Bohr topology. Moreover CΛ(T)
contains a subspace isomorphic to c0 (see [10]). A natural question is: when Λ is uniformly
distributed, does the space CΛ(T) contain a lot of spaces c0? More precisely, does this
space have the Pe lczyński property (V )?

Recall that a Banach space X has the property (V ) of Pe lczyński if, for every non
relatively weakly compact bounded set K ⊂ X∗, there exists a weakly unconditionally
Cauchy series

∑
xn in X such that inf

n
sup{|k(xn)|; k ∈ K} > 0.

We are going to prove that this is false in general and that the previous sets Λω do
not have this property, almost surely.

In the sequel, we shall denote by G the following gap property for a set Λ ⊂ N: for
every infinite subset Λ′ of Λ, there exists p0 ≥ 1 such that for infinitely many p, we may
choose λp ∈ Λ′ ⊂ Λ with Λ ∩ ([λp − (p0 + p), λp − p0] ∪ [λp + p0, λp + p0 + p]) = ∅.

Obviously, up to an extraction, we may suppose that the sequence (λp)p is Hadamard.
We first have an easy criterion to check that a set has property G.

Lemma 8. A finite union of subsets of N whose pace tends to infinity has property G.

Recall that “the pace E tends to infinity” means that λn+1 − λn → +∞, where
E = {λn}.

Proof. Suppose that Λ′ ⊂ Λ = ∪1≤j≤dΛj, where Λ′ is infinite and the pace of the sets
Λj tends to infinity. We denote by δλ the distance from λ to its complementary in Λ. If
sup
λ∈Λ′

δλ = +∞, then the conclusion follows with p0 = 1. If not, sup
λ∈Λ′

δλ = M1 ≥ 1 and we

consider δ
(1)
λ the distance from λ to Λ \ [λ−M1, λ + M1].
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Once again, either sup
λ∈Λ′

δ
(1)
λ = +∞, in which case we choose p0 = M1 + 1, or sup

λ∈Λ′
δ
(1)
λ =

M2 > M1. And we continue this process.
We claim that the process stops and we have the p0, as promised. Indeed, if we could

continue until having Md, we would have a contradiction: by hypothesis, for λ 6= λ′ big
enough (upper than some N), belonging to the same Λj (for some j), we have |λ− λ′| >
2Md. Choose λ1 ∈ Λ′ with λ1 > N + Md. Actually λ1 ∈ Λj1 for some j1. By definition
of M1, we can find λ2 ∈ Λj2 (where j2 must be different from j1) with |λ1 − λ2| ≤ M1.
In the same way, we can find λ3 ∈ Λj3 (where j3 /∈ {j1, j2}) with |λ1 − λ3| ≤ M2 and
λ3 /∈ [λ1 −M1, λ1 + M1]. This can be done until the step d + 1. But we would construct
j1, . . . , jd+1 distincts points with values in {1, . . . , d}.

Proposition 2. Let Λ ⊂ N with property G.
Then every infinite subset Λ′ ⊂ Λ contains a Hadamard subset H such that CH(T) is

complemented in CΛ(T).

We shall denote by [A] the mesh spanned by the finite set A:

[A] =
{ ∑

a∈A

εaa| εa ∈ {−1, 0, 1}
}
.

Proof. Let p0 be given by property G. Suppose that p0 < h1 < · · · < hp are con-
structed in Λ′ ⊂ Λ with hj+1 ≥ 3hj; [{h1, . . . , hp}]∩Λ = {h1, . . . , hp} and [{h1, . . . , hp}]∩
[−p0, p0] = {0}. We write L = h1 + . . .+hp. We can find hp+1 ∈ Λ′ with [hp+1−L, hp+1 +
L] ∩ (Λ\]hp+1 − p0, hp+1 + p0[) = ∅ and hp+1 > 3hp. Now, the sequence (hn) is Hadamard
and [{h1, . . . , hp+1}] ∩ Λ = {h1, . . . , hp+1}. We introduce the classical associated Riesz
products

RN(x) = 2
N∏

n=1

[1 + cos(2πhnx)].

A standard weak compactness argument in M(T) provides us with a measure µ bounded
by 2, whose Fourier coefficients take values 1 on H and cancel on Λ \H. The convolution
operator by µ is then a translation invariant projection from CΛ(T) onto CH(T).

We add the following remark: Lemma 8 is not an equivalence. Indeed, when A and
B are infinite, Λ = {a + b| a ∈ A, b ∈ B, a 6= b} cannot be a finite union of subsets
of N whose pace tends to infinity. For instance, this is the case for {3n + 3m|n > m}.
Nevertheless, this set has property G and we can construct some complemented copy of
`1: it suffices to choose p0 = 1 and the λj’s among the 3j + 3j−1.

As a corollary, we obtain

Theorem 6. Let Λ ⊂ N be a finite union of subsets of N whose pace tends to infinity.
Then
i) CΛ(T) contains a complemented copy of `1.
ii) L1

Z−∪Λ(T) contains a complemented copy of `2.
iii) CΛ(T) does not have property (V) of Pe lczyński.

A special example. Observe that this applies to the case of polynomial sets P (N)
(where P is a polynomial with degree upper than 2) and this gives an example of a space
CP (N)(T) which does not have property (V) of Pe lczyński but contains a copy of c0. The
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fact that CP (N)(T) contains some subspace isomorphic to c0 was proved by Lust-Piquard
[12] in the case P (X) = Xs, where s ≥ 2. Nevertheless, the same argument works as well
in full generality.

We did not find examples of translation invariant spaces with such properties in the
litterature.

We also point out the following consequences of (i): CΛ(T) cannot verify the Theorem
of Grothendieck (dual version). In the same spirit, (ii) implies that L1

Z−∪Λ(T) cannot
verify the Theorem of Grothendieck and does not have the Dunford-Pettis property.

Proof. (iii) immediatly follows from (i).
(i) and (ii) follow from the preceding proposition: the Hadamard set H is a Sidon set:

CH(T) is isomorphic to `1. The space L1
H(T) is isomorphic to `2 (H being Sidon hence

Λ(2)). The complementation in CΛ(T) being translation invariant, it is equivalent to the
existence of a measure µ whose Fourier coefficients take value 1 on H and 0 on Λ \ H
(actually µ is given in the proof of the proposition). The convolution operator by µ is
a bounded complementation from L1

Λ(T) to L1
H(T). At last, we can “add” the negative

integers as in Lemma 1.5 [7].

Theorem 7. Let 1 ≤ p < 4/3. If Λ is a p-Sidon set, then CΛ(T) does not have property
(V) of Pe lczyński.

Proof. This immediatly follows from Theorem 6 and the fact that p-Sidon sets are
finite union of sets whose pace tends to infinity: Déchamps-Gondim proved this result in
the case p = 1 in [1] (see lemmes 6.1, 6.2 et corollaire). The same proof works as well in
the case p < 4/3. In fact the proof works for sets which do not contain sets of the form
A + B with A and B finite sets but arbitrarily large. The details are left to the reader.

We wish to finish the paper with some open problems
1) Is the union of two LP sets a LP set?
1’) Let Λ ⊂ N and Λ′ ⊂ Z− be LP sets, Λ ∪ Λ′ is a LP set?
1”) Let Λ ⊂ N be a LP set, −Λ ∪ Λ is a LP set?
2) Let E ⊂ N be closed in Z for the Bohr topology. Is E a LP set?
2’) Is the set of squares a LP set ?
3) Let Λ ⊂ Z such that c0 6⊂ CΛ(T). Do we have that Λ is a LP set?
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