Fonctions de plusieurs variables

Exercice 1 Montrer que la norme euclidienne sur \mathbb{R}^n est différentiable sur $\mathbb{R}^n \setminus \{0\}$.

Exercice 2 Etudier la continuité et la différentiabilité de la fonction f suivante (où $\alpha > 0$)

$$\mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} 0 & si(x,y) = 0 \\ \frac{|xy|^{\alpha}}{x^2 - xy + y^2} & sinon \end{cases}$$

Indication: on pourra tester f(x,x) et discuter en fonction de α .

Exercice 3 Montrer que la fonction f suivante est différentiable sur \mathbb{R}^2 et calculer les dérivées partielles croisées secondes en (0,0). Qu'en déduit-on ?

$$\mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} 0 & si(x,y) = 0 \\ xy\frac{x^2 - y^2}{x^2 + y^2} & sinon \end{cases}$$

Exercice 4 Soit f une fonction dérivable sur \mathbb{R} . On considère la fonction F

$$\mathbb{R}^2 \longrightarrow \mathbb{R}$$

$$(x,y) \longmapsto \begin{cases} \frac{f(x) - f(y)}{x - y} & si \ x \neq y \\ f'(x) & si \ x = y \end{cases}$$

- 1) Montrer que F est continue si et seulement si f est de classe C^1 .
- Indication: on fera très attention en écrivant la continuité. Utiliser le Th. des accroissements finis
- 2) Montrer que F est différentiable sur $\mathbb{R}^2 \setminus \Delta$, où Δ est la diagonale $\{(x,x) | x \in \mathbb{R}\}$. On suppose que f''(a) existe. Montrer que F est différentiable en (a,a). Indication: considérer la fonction $t \mapsto f(t) (t-a)f'(a) \frac{(t-a)^2}{2}f''(a)$.

Exercice 5 Montrer que l'application déterminant (disons dans la base canonique) est différentiable sur $\mathbb{R}^n \times \cdots \times \mathbb{R}^n$ et montrer que sa différentielle est reliée à la trace.

Indication: On commencera par simplifier les choses en se ramenant à la différentiabilité en I. Ensuite, il y a plusieurs méthodes. Par exemple, on peut penser au polynôme caractéristique.

Exercice 6 Soient u, v deux vecteurs de \mathbb{R}^2 . Montrer que les applications suivants sont différentiables et calculer préciser leur jacobienne.

Exercice 7 Pour $|t| < 1/\sqrt{2}$, montrer que l'équation $\sin(tx) + \cos(tx) = x$ admet une unique solution que l'on note $\varphi(t)$. Montrer que la fonction φ ainsi définie est de classe C^{∞} sur $]-1/\sqrt{2}, 1/\sqrt{2}[$ et donner un DL à l'ordre 3 au voisinage de 0.

Indication: on pourra utiliser le th. des fonctions implicites.

Exercice 8 Exprimer le laplacien en coordonnées polaires. On rappelle que $\Delta f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$ en coordonnées cartésiennes et que le changement de variable en polaires est $x = r\cos(\theta)$ et $y = r\sin(\theta)$.

Exercice 9 Dans le plan euclidien, deux cercles sont tangents extérieurement en O. Un point M décrit le premier cercle, un point M' décrit le second cercle. Trouver l'aire maximale du triangle OMM'.

Exercice 10 Trouver la plus petite constante C telle que pour tous $x, y \ge 0$, on a $x^2 + y^2 \le C \exp(x + y)$.

Exercice 11 Pour x, y, z > 0, on définit $f(x, y, z) = x \ln(x) + y \ln(y) + z \ln(z)$. Déterminer les extremum de f sur l'hyperplan x + y + z = 3.

Indication: méthode 1: utiliser les résultats sur les extrema liés. Méthode 2: se ramener à des fonctions de deux variables.

Exercice 12 Calculer l'aire de la fenêtre de Viviani: surface obtenue comme intersection de la sphère unité (de \mathbb{R}^3) et du cylindre d'équation $x^2 + y^2 - x = 0$.

Indication: on rappelle que l'aire de la surface donnée par l'ensemble des points M tels que $\overrightarrow{OM} = \vec{f}(x,y)$, où $(x,y) \in D$ est $\int_D \left\| \frac{\partial \vec{f}}{\partial x} \wedge \frac{\partial \vec{f}}{\partial y} \right\| dxdy$

Exercice 13 Calculer le volume d'une boule de rayon R de \mathbb{R}^n (muni de sa structure euclidienne).

Indication: on pourra raisonner par récurrence sur la dimension.