Examen TOPOLOGIE

Les calculatrices et les documents sont interdits. La rédaction sera prise en compte dans la notation.

Questions de cours. (3,5 points=0,5+1+2)

- 1) Qu'est qu'un espace topologique séparable?
- 2) Qu'est que la topologie produit sur un produit quelconque d'espaces topologiques?
- 3) Démontrer qu'un produit dénombrable d'espaces topologiques séparables est séparable.

Exercice 1. (2 points)

Soit $(r_n)_{n\in\mathbb{N}}$ une suite de rationnels positifs qui converge vers $\ell\notin\mathbb{Q}$. On écrit $r_n=\frac{a_n}{b_n}$, où $a_n\in\mathbb{N}$ et $b_n\in\mathbb{N}\setminus\{0\}$.

Montrer que $\lim_{n\to+\infty} a_n = \lim_{n\to+\infty} b_n = +\infty$.

Indication: raisonner par l'absurde en supposant que $(b_n)_{n\in\mathbb{N}}$ ne diverge pas vers l'infini.

Exercice 2. (4 points=2+2)

Soit X un ensemble muni de la topologie discrète.

- 1) Rappeler ce qu'est la topologie discrète. Est-ce un espace métrisable? (Justifier).
- 2) Montrer que les parties compactes sont les parties finies de X.

Exercise 3. (5 points = [(0,5+1)+1]+[1+1,5])

Dans tout cet exercice (X, τ) est un espace topologique compact.

- I]1) Soient $x \in X$ et F un fermé de X tels que $x \notin F$.
- a) Est-ce que F est une partie compacte de X? (Justifier).
- b) Montrer qu'il existe deux ouverts disjoints $\omega_x \in \tau$ et $\omega_x' \in \tau$ tels que $x \in \omega_x$ et $F \subset \omega_x'$.
- 2) Soient F et F' deux fermés disjoints de X.

Déduire de ce qui précède qu'il existe deux ouverts disjoints Ω et Ω' tels que $F \subset \Omega$ et $F' \subset \Omega'$. Comment s'appelle cette propriété de l'espace topologique (X, τ) ?

- II] On rappelle qu'un espace topologique est localement compact si tout élément admet une base de voisinages compacts.
- 1) On fixe $a \in X$ et V un voisinage de a. Montrer qu'il existe un fermé F tel que $a \notin F$ et $V^c \subset F$.
 - 2) Montrer qu'un espace compact est localement compact.

Exercice 4. (5.5 points=1+2+0.5+2)

On note E l'espace vectoriel des applications continues sur [0,1] à valeurs réelles, muni de la norme sup.: $||f||_{\infty} = \sup_{x \in [0,1]} |f(x)|$.

On définit T, l'application linéaire de E dans E suivante: pour $f \in E$ et $x \in [0, 1]$:

$$T(f)(x) = \sum_{n=1}^{\infty} \frac{1}{2^{n+1}} f\left(\frac{x}{2^n}\right).$$

- 1) Montrer que T est bien définie.
- 2) Justifier que T est continue. Calculer ||T||.
- 3) T est-elle lipschitzienne? Si oui, avec quelle constante?
- 4) Montrer qu'il existe $f \in E$ telle que pour tout $x \in [0,1]$: $f(x) = x^4 + \sum_{n=1}^{\infty} \frac{1}{2^{n+1}} f\left(\frac{x}{2^n}\right)$ (on ne cherchera pas à trouver f!). Indication: on pourra considérer $L(f) = T(f) + X^4$.