INTÉGRATION Contrôle Continu 1

Un exercice tombera à l'épreuve de contrôle continu.

Exercice 1.

Soit $\varphi : [a, b] \to [\alpha, \beta]$ de classe C^1 .

1) Soit f une fonction continue sur $[\alpha, \beta]$. Montrer que

Indication: on commencera par justifier que tout a un sens et on introduira les fonctions $F(y) = \int_a^y f \circ \varphi(x). \ \varphi'(x) \ dx \ et \ G(y) = \int_{\varphi(a)}^{\varphi(y)} f(x) \ dx.$

On suppose désormais φ croissante.

2) Soit f une fonction Riemann-intégrable sur $[\alpha, \beta]$.

Montrer que $f \circ \varphi$ est Riemann-intégrable [a, b] et que (*) est encore vrai.

Indication: on pourra par exemple s'appuyer sur la question 1. remarquant que (*) est vrai pour les fonctions en escalier puis on encadrera une fonction Riemann-intégrable par deux fonctions en escalier dont la différence des intégrales est petite.

Exercice 2.

On cherche à calculer
$$I = \int_{0}^{+\infty} \frac{1}{1 + x^4 + x^8} dx$$

1) Montrer que cette intégrale converge.

2) Montrer que
$$I = \int_{0}^{+\infty} \frac{x^6}{1 + x^4 + x^8} dx$$
.

Indication: on pourra effectuer avec prudence un changement de variable $x \mapsto 1/x$, en soignant la rédaction!!

3) En déduire que
$$I = \frac{1}{2} \int_{0}^{+\infty} \frac{1+x^2}{1+x^2+x^4} dx$$
. Puis que $I = \frac{1}{4} \int_{-\infty}^{+\infty} \frac{1}{1+x+x^2} dx$.

4) En déduire la valeur de I.

Exercice 3.

Soit f une fonction localement Riemann intégrable sur \mathbb{R}^+ telle que $\int_0^{+\infty} f(x) dx$ converge.

- 1) On suppose que $L = \lim_{+\infty} f$ existe, montrer que L = 0.
- 2) On suppose que f est uniformément continue, montrer que $\lim_{+\infty} f = 0$.

Exercice 4.

Soit (X, T, m) un espace mesuré fini: $m(X) < \infty$. On considère une suite de fonctions mesurables $f_n : X \to \mathbb{R}$ convergeant simplement vers une fonction $f : X \to \mathbb{R}$.

On souhaite montrer que: pour tout $\varepsilon > 0$, il existe $A_{\varepsilon} \in T$ tel que $m(X \setminus A_{\varepsilon}) \leq \varepsilon$ et tel que la suite $(f_n)_n$ converge uniformément sur A_{ε} vers f. Pour cela :

- a) Pour tout entier k > 1 fixé, on pose $A_{n,k} = \bigcup_{j>n} \{|f_j f| > 1/k\}$. Montrer que la suite $(m(A_{n,k}))_n$ est décroissante et tend vers 0 lorsque n tend vers linfini.
- b) Soit $\varepsilon > 0$ fixé. Construire une suite dentiers $(n_k)_k > 1$ telle que $B_{\varepsilon} = \bigcup_{k>1} A_{n_k,k}$ soit de mesure $m(B_{\varepsilon}) \leq \varepsilon$.
 - c) Conclure.