VARIABLE COMPLEXE - Examen session 1

Éléments de correction

Cours. 4b. On suit la méthode vue en cours et en TD.

On considère la fonction $f(z) = \frac{1}{(z^2+z+1)^3}$ qui est méromorphe sur $\mathbb C$ ayant pour pôles (triples) j et \bar{j} , où $j = -\frac{1}{2} + i\frac{\sqrt{3}}{2} = \mathrm{e}^{2i\pi/3}$.

On applique donc le théorème des résidus sur $\Omega = \mathbb{C}$ qui est simplement connexe, avec $\mathscr{S} = \{j, \bar{j}\}$ et pour R > 1, on considère le chemin Γ_R qui est le bord orienté du demi-disque (demi-plan supérieur) de centre 0 et de rayon R (et qui est donc homologue à 0 dans Ω) et vérifie $\Gamma_R^* \cap \mathscr{S} = \varnothing$. La fonction f est holomorphe sur $\Omega \backslash \mathscr{S}$. On a donc

$$\frac{1}{2i\pi} \int_{\Gamma_R} f(z) dz = res(f,j).Ind_{\Gamma_R}(j) + res(f,\bar{j}).Ind_{\Gamma_R}(\bar{j}) = res(f,j)$$

 $\operatorname{car}\, Ind_{\Gamma_R}(\bar{j})=0 \text{ et } Ind_{\Gamma_R}(j)=1.$

Par ailleurs, pour calculer ce résidu, on pose $u(z) = (z - j)^3 f(z) = \frac{1}{(z - \bar{j})^3}$ qui définit une fonction holomorphe sur $\mathbb{C}\setminus\{\bar{j}\}$. Le cours indique que

$$res(f,j) = \frac{1}{2!}u''(j) = \frac{6}{(j-\bar{j})^5} = -\frac{2i}{3\sqrt{3}}$$

En passant à la limite sur R et en appliquant Jordan 1, puisque $\lim_{|z|\to +\infty} zf(z)=0$, on obtient

$$\frac{1}{2i\pi} \int_{-\infty}^{+\infty} f(x) \, dx = -\frac{2i}{3\sqrt{3}}$$

donc

$$\int_{-\infty}^{+\infty} \frac{1}{(x^2 + x + 1)^3} \, dx = \frac{4\pi}{3\sqrt{3}} \, \cdot$$

Exercice 1. cf T.D. Pour un contre-exemple: f(z) = z et $g(z) = z^2$.

Exercice 2 Si f n'est pas constante, le théorème de l'application ouvert indique que $f(\Omega)$ est un ouvert de \mathbb{C} . Mais l'application $w \in \mathbb{C} \mapsto w^N$ est con constante et holomorphe sur le connexe \mathbb{C} donc elle est aussi ouverte. Par composition, $f^N(\Omega)$ est un ouvert de \mathbb{C} qui est censé être inclus dans \mathbb{R} par hypothèse. Ce qui est une contradiction: un ouvert non vide de \mathbb{C} contient un disque de rayon non nul, ce qui est clairement faux pour \mathbb{R} .

Exercice 3

On applique le théorème d'holomorphie pour une fonction définie comme une intégrale dépendant d'un paramètre.

Soit $\Phi(t,z) = f(t)e^{tz}$ pour $t \in [0,1]$ et $z \in \mathbb{C}$. C'est une fonction continue sur $[0,1] \times \mathbb{C}$ donc g(z) existe pour tout $z \in \mathbb{C}$.

De plus à $z \in \mathbb{C}$ fixé, $t \in [0,1] \longrightarrow \Phi(t,z)$ est continue donc mesurable.

A $t \in [0, 1]$ fixé, $z \in \mathbb{C} \longrightarrow \Phi(t, z)$ est holomorphe.

Enfin, pour tout compact $K \subset \mathbb{C}$ et tout $(t,z) \in [0,1] \times K$, on a

$$|\Phi(t,z)| = |f(t)|e^{tRe(z)} \le |f(t)|e^{tk}$$

où $k=\sup\{Re(z)\,|\,z\in K\}$ qui est bien défini puisque K, compact, est borné.

Comme la fonction $t \in [0,1] \longrightarrow |f(t)|e^{tk}$ est intégrable, on a la conclusion.

Exercice 4

D'abord $x \in]0, +\infty[\longrightarrow \frac{(\ln(x))^2}{(x+1)(x+3)}$ est continue donc localement intégrable. Au voisinage de $0, f(x) \sim (\ln(x))^2 = o(1/\sqrt{x})$ et au voisinage de $+\infty$, on a $f(x) \sim \frac{(\ln(x))^2}{x^2} = o(1/x^{3/2})$. On peut alors appliquer le critère de Bertrand ou le critère de Riemann au choix...

- a) Il s'agit de la détermination du logarithme associée à un argument (notée arg(z)) à valeurs dans $]0, 2\pi[$, et on a $\log(z) = \ln(|z|) + iarg(z)$.
- b) f est holomorphe sur $\Omega \setminus \mathscr{S}$ avec $\mathscr{S} = \{-3; -1\}$ et -3 et -1 sont des pôles simples. Le calcul des résidus est alors facile:

$$res(f, -3) = \frac{\left(\log(-3)\right)^3}{(-3+1)} = -\frac{1}{2}\left(\ln(3) + i\pi\right)^3$$

et de même

$$res(f,-1) = \frac{1}{2} (i\pi)^3 = -\frac{i\pi^3}{2}$$
.

On applique les techniques vues en cours et TD (cf exercice traité identique à la puissance du log près).

On obtient finalement

$$-3I - 3(2i\pi) \int_0^{+\infty} \frac{\ln(x)}{(x+1)(x+3)} dx - (2i\pi)^2 \int_0^{+\infty} \frac{1}{(x+1)(x+3)} dx = -\frac{1}{2} \left(\ln(3) + i\pi\right)^3 - \frac{i\pi^3}{2} dx$$

Comme

$$\int_0^{+\infty} \frac{1}{(x+1)(x+3)} dx = \left[\frac{1}{2} \ln \left(\frac{x+1}{x+3} \right) \right]_0^{+\infty} = \frac{1}{2} \ln(3) ,$$

on obtient en passant à la partie réelle:

$$I = \frac{(\ln^2(3) + \pi^2) \ln(3)}{6} .$$