Licence de Mathématiques. Université d'Artois. 2018-2019.

Examen- session 1. SÉRIES - INTÉGRALES.

Eléments de correction

Exercice 1 cf D.M.

Exercice 2

1) Clairement , nous avons affaire (et à faire) à une série alternée. De plus, la suite $\left(\frac{1}{2+\ln(n+1)}\right)_{n\geqslant 0}$ est décroissante et sa limite est 0. D'après le théorème des séries alternées, la série $\sum a_n$ converge.

2) On utilise le test (règle) de Cauchy. On remarque d'abord que $v_n \ge 0$ pour tout $n \in \mathbb{N}$. Ensuite

$$v_n^{\frac{1}{n}} = \left(\frac{n+1}{n+2}\right)^n = \exp\left(n\ln\left(1 - \frac{1}{n+2}\right)\right)$$

et un D.L. donne

$$\ln\left(1 - \frac{1}{n+2}\right) = -\frac{1}{n+2} + O\left(\frac{1}{(n+2)^2}\right) = -\frac{1}{n+2} + O\left(\frac{1}{n^2}\right).$$

Ainsi

$$\lim_{n \to +\infty} n \ln \left(1 - \frac{1}{n+2} \right) = -1 \quad \text{et} \quad \lim_{n \to +\infty} v_n^{\frac{1}{n}} = \frac{1}{e} < 1.$$

Donc la série $\sum v_n$ converge.

Exercice 3

1) On commence par remarquer que $t \in \mathbb{R}^+ \longmapsto f(t) = \frac{\sin\left(t^2\right)}{t^3 + 7t^2 + 5}$ est continue donc localement intégrable.

Ensuite, d'une part $|\sin(\cdot)|$ est bornée par 1. D'autre part, $t^3 + 7t^2 + 5 \ge t^3$ pour tout $t \in \mathbb{R}^+$. Ainsi, pour tout t > 0 (et en particulier lorsque t tend vers $+\infty$), on a

$$|f(t)| \leqslant \frac{1}{t^3}$$

D'après le théorème de comparaison et le critère de Riemann (3 > 1), l'intégrale converge (absolument).

2) $x \in]0,1] \mapsto g(x) = \frac{x}{\ln \left(1+x^2\right)}$ est continue donc localement intégrable. En effet $\ln \left(1+x^2\right) \geqslant 0$ sur [0,1] et ne vaut 0 que si x^2 (donc x) vaut 0. La fonction g est positive. Au voisinage de 0, on a $\ln \left(1+x^2\right) \sim x^2$ donc $g(x) \sim \frac{1}{x}$. D'après le critère de Riemann, l'intégrale $\int_0^1 \frac{x}{\ln \left(1+x^2\right)} \, dx$ diverge (vers $+\infty$)

3) $x \in \mathbb{R}^+ \longrightarrow \frac{x \sin(x^2)}{1 + \sqrt{x}}$ est continue donc localement intégrable.

On va utiliser le test d'Abel-Dirichlet pour justifier la convergence de $\int_0^{+\infty} \frac{x \sin(x^2)}{1 + \sqrt{x}} dx$.

D'une part pour tout A > 0, on a $\int_0^A x \sin(x^2) dx = \frac{1}{2}(1 - \cos(A^2))$ donc

$$\left| \int_0^A x \sin(x^2) \ dx \right| \leqslant \frac{3}{2} \cdot$$

D'autre part, $x \in \mathbb{R}^+ \longrightarrow \frac{1}{1+\sqrt{x}}$ est décroissante et tend vers 0 en $+\infty$.

Le résultat est donc établi.

On pouvait aussi faire un changement de variable et se ramener à une situation plus classique.

Exercice 4 (cf TD.)

1) Si |z| > 1, on peut remarquer $|u_n| \longrightarrow +\infty$ (croissances comparées). En particulier la série diverge grossièrement.

Si |z| < 1, comme la suite $\left(\frac{n + \ln(n)}{n^2 + 1}\right)$ est bornée (puisque qu'elle converge vers 0 par exemple), on a $|u_n| = O(|z|^n)$ or la série géométrique de terme général $|z|^n$ converge puisque |z| < 1. Ainsi la série $\sum u_n$ est absolument convergente.

On pouvait aussi tout traiter avec le test de D'Alembert (en faisant attention au cas z=0...).

2) $|u_n| \sim \frac{1}{n}$ et la série harmonique diverge, donc $\sum |u_n|$ est divergente. Pour z=1, $u_n=|u_n|$ d'où la conclusion !

3) Pour tout
$$N \ge 2$$
, on a $\sum_{k=2}^{N} z^k = \frac{z^2 - z^{N+1}}{1-z}$ car $z \ne 1$. Donc

$$\left|\sum_{k=2}^{N} z^k\right| \leqslant \frac{2}{|1-z|}$$

(qui est indépendant de N) donc la suite est bien bornée.

La suite $\left(\frac{n+\ln(n)}{n^2+1}\right)_{n\geqslant 2}$ est décroissante: en effet $t\geqslant 2\longmapsto \frac{t+\ln(t)}{t^2+1}$ est décroissante car (par exemple) elle a une dérivée négative. On conclut avec Abel...

Exercice 5

La fonction $x \in \mathbb{R}^+ \longrightarrow \sin(x)e^{-\lambda x}$ est continue donc localement intégrable.

La convergence sera justifiée via le calcul mais on peut aussi directement remarquer que $|\sin(x)e^{-\lambda x}| \le e^{-\lambda x}$ qui est d'intégrale convergente car $\lambda > 0$.

Pour tout A > 0, on a

$$\int_0^A \sin(x) e^{-\lambda x} dx = \int_0^A Im\left(e^{ix}e^{-\lambda x}\right) dx = Im\left(\int_0^A e^{ix}e^{-\lambda x} dx\right)$$

[on pouvait aussi faire une variante via la formule de De Moivre]

$$\int_0^A e^{ix} e^{-\lambda x} dx = \int_0^A e^{(i-\lambda)x} dx = \frac{1}{i-\lambda} \left(e^{(i-\lambda)A} - 1 \right) = \frac{\lambda + i}{\lambda^2 + 1} \left(1 - e^{iA} e^{-\lambda A} \right)$$

donc

$$\int_0^A \sin(x) e^{-\lambda x} dx = \frac{1 - \cos(A) e^{-\lambda A}}{\lambda^2 + 1} - \frac{\lambda \sin(A) e^{-\lambda A}}{\lambda^2 + 1}.$$

Et quand $A \to +\infty$, on obtient que l'intégrale converge vers $\frac{1}{\lambda^2 + 1}$.

Variante pour la fin: on pouvait aussi remarquer que l'intégrale converge vers la partie imaginaire de $\frac{1}{\lambda - i}$ car $e^{(i-\lambda)A}$ dont le module est $e^{-\lambda A}$ tend vers 0.

Exercice 6

- 1) C.f. Cours $(s \in]1, +\infty[)$.
- 2) On effectue une comparaison série-intégrale. D'après la méthode du cours, comme $x \in]1, +\infty[\mapsto \frac{1}{r^s}$ est décroissante, on obtient le résultat.

Pour s > 1 et A > 1, on a

$$\int_{1}^{A} \frac{1}{x^{s}} dx = \left[\frac{1}{1-s} x^{1-s} \right]_{0}^{A} = \frac{1}{s-1} (1 - A^{1-s}) \longrightarrow \frac{1}{s-1} \quad \text{quand } A \to +\infty.$$

Ainsi $\int_1^{+\infty} \frac{1}{x^s} dx = \frac{1}{s-1}$ et donc $1 \le (s-1)\zeta(s) \le (s-1)+1$. D'après le "théorème des gendarmes", on obtient $(s-1)\zeta(s) \to 1$ donc on a bien $\zeta(s) \sim \frac{1}{s-1}$ lorsque $s \to 1^+$.