CALCULUS 1 - Examen session 1

Éléments de correction

Exercice 1. (a) Les racines du polynôme $4x^2 + 3x - 1$ sont -1 et $\frac{1}{4}$. En effet, on peut soit passer par le discriminant qui vaut 25, soit on constate que -1 est racine puis que le produit des racines vaut $-\frac{1}{4}$.

Ainsi l'ensemble des solutions est] $-\infty$, $-1[\cup]1/4$, $+\infty[$.

(b) Comme d'habitude (cf cours/TD): on traduit la question: pour tout $x \in \mathbb{R}$:

$$\left| x^2 + 3x - 1 \right| < 3x^2 \iff -3x^2 < x^2 + 3x - 1 < 3x^2 \iff 0 < 2x^2 - 3x + 1 \text{ et } 0 < 4x^2 + 3x - 1.$$

La seconde inéquation a été traitée au (a).

Quant à la seconde: les racines du polynôme $2x^2-3x+1$ sont 1 et $\frac{1}{2}$. En effet, on peut soit passer par le discriminant qui vaut 1, soit on constate que 1 est racine puis que le produit des racines vaut $\frac{1}{2}$. Ainsi $0 < 2x^2 - 3x + 1$ si et seulement x appartient à $]-\infty, 1/2[\cup]1, +\infty[$.

Pour synthétiser, l'ensemble des solutions cherché est $(]-\infty, 1/2[\cup]1, +\infty[)\cap(]-\infty, -1[\cup]1/4, +\infty[)$. Finalement l'ensemble des solution est

$$\bigg] - \infty, -1 \bigg[\ \cup \ \bigg] \frac{1}{4}, \frac{1}{2} \bigg[\ \cup \ \bigg] 1, + \infty \bigg[$$

Exercice 2. On fait comme d'habitude... Pour $x \in \mathbb{R}$.

$$\sin\left(2x + \frac{\pi}{4}\right) = \sin(x) \iff \begin{cases} 2x + \frac{\pi}{4} = x + 2k\pi & \text{où } k \in \mathbb{Z} \\ \text{OU} \\ 2x + \frac{\pi}{4} = \pi - x + 2k\pi & \text{où } k \in \mathbb{Z} \end{cases}$$

$$\iff \begin{cases} x = -\frac{\pi}{4} + 2k\pi & \text{où } k \in \mathbb{Z} \\ \text{OU} \\ x = \frac{\pi}{4} + \frac{2k\pi}{3} & \text{où } k \in \mathbb{Z} \end{cases}$$

Finalement l'ensemble des solutions est $\left\{-\frac{\pi}{4} + 2k\pi \mid k \in \mathbb{Z}\right\} \cup \left\{\frac{\pi}{4} + \frac{2k\pi}{3} \mid k \in \mathbb{Z}\right\}.$

Exercice 3. On considère $f(x) = \ln (1 + (\sin(x))^2)$.

a) On rappelle que la fonction sin est \mathscr{C}^1 sur \mathbb{R} donc son carré aussi. Pour tout réel x, on a $1 + \left(\sin(x)\right)^2 \geqslant 1 > 0$ donc comme ln est définie (et même de classe \mathscr{C}^1) sur \mathbb{R}^{*+} , la fonction f est bien définie sur \mathbb{R} . D'après le théorème de régularité automatique du cours, ou simplement d'après l'argument donné juste avant, f est de classe \mathscr{C}^1 sur \mathbb{R} .

Pour tout $x \in \mathbb{R}$,

$$f'(x) = \frac{2\cos(x)\sin(x)}{1 + (\sin(x))^2} = \frac{\sin(2x)}{1 + (\sin(x))^2}.$$

b) On a
$$f\left(\frac{\pi}{4}\right) = \ln(1+1/2) = \ln\left(\frac{3}{2}\right)$$
 et $f'\left(\frac{\pi}{4}\right) = \frac{1}{1+\frac{1}{2}} = \frac{2}{3}$.

L'équation de la tangente au point d'abscisse $\frac{\pi}{4}$ à la courbe de représentative de f est donc

$$Y = \frac{2}{3} \left(X - \frac{\pi}{4} \right) + \ln \left(\frac{3}{2} \right)$$

ou encore

$$Y = \frac{2}{3}X - \frac{\pi}{6} + \ln\left(\frac{3}{2}\right).$$

c) Pour tout $x \in \mathbb{R}$, on a $|f'(x)| = \frac{|\sin(2x)|}{1 + (\sin(x))^2}$ car le dénominateur est strictement positif.

Or $|\sin(2x)| \le 1$ d'une part et $1 + (\sin(x))^2 \ge 1$ d'autre part. Ainsi $|f'(x)| \le 1$.

Pour tous réels b>a, on applique l'inégalité des accroissements finis à f entre a et b. La fonction est dérivable sur $\mathbb R$ et la dérivée est majorée par 1 donc

$$f(b) - f(a) \le \sup_{x \in [a,b]} |f'(x)| \cdot |b - a| \le |b - a| = b - a$$
.

En réarrangeant (propriété de ln), on obtient

$$\ln\left(\frac{1 + (\sin(b))^2}{1 + (\sin(a))^2}\right) = f(b) - f(a) \le b - a.$$

Exercice 4.

La fonction $x \mapsto \frac{5x^{2022} - 2x^{2023} + 2004}{2003 - x^{2023}}$ est une fraction rationnelle donc la limite en l'infini est la limite du quotient des termes de plus haut degré (cf cours). Ainsi

$$\lim_{x \to +\infty} \frac{5x^{2022} - 2x^{2023} + 2004}{2003 - x^{2023}} = \lim_{x \to +\infty} \frac{-2x^{2023}}{-x^{2023}} = \frac{-2}{-1} = 2 \; .$$

D'après le cours sur les croissances comparées:

$$\lim_{x \to 1^+} (x-1)^{\frac{1}{2022}} \ln(x-1) = \lim_{t \to 0^+} t^{\frac{1}{2022}} \ln(t) = 0 \quad \text{car l'exposant } \frac{1}{2022} > 0.$$

Pour tout $x \in \mathbb{R}^*$, on a $\left|\cos\left(\frac{1}{x}\right)\right| \le 1$ donc

$$\left|\sqrt{|x|}\cos\left(\frac{1}{x}\right)\right| \leqslant \sqrt{|x|} \longrightarrow 0 \quad \text{quand } x \to 0.$$

Ainsi $\lim_{x \to 0} \sqrt{|x|} \cos\left(\frac{1}{x}\right) = 0.$

Exercice 5. Toutes les intégrales sont bien définies: ce sont des intégrales d'un fonction continue sur un segment.

(i) $\int_0^1 \frac{1}{\sqrt[5]{x+1}} dx = \int_0^1 (x+1)^{-\frac{1}{5}} dx = \left[\frac{5}{4} (x+1)^{\frac{4}{5}} \right]_0^1 = \frac{5}{4} \left(2^{\frac{4}{5}} - 1 \right) \cdot \int_0^{\frac{\pi}{4}} \tan(x) dx = \left[-\ln|\cos(x)| \right]^{\frac{\pi}{4}} = \frac{1}{2} \ln(2) \quad (cf \ cours).$

Comme vu en cours et en TD, on fait une intégration par parties et on obtient

$$\int_0^{\frac{\pi}{3}} x \cos(x) \ dx = \left[x \sin(x) \right]_0^{\frac{\pi}{3}} - \int_0^{\frac{\pi}{3}} \sin(x) \ dx = \frac{\pi}{2\sqrt{3}} + \left[\cos(x) \right]_0^{\frac{\pi}{3}} = \frac{1}{2} \left(\frac{\pi}{\sqrt{3}} - 1 \right).$$

(ii) Comme vu en cours et en TD, on effectue les trois étapes.

On constate que $t = \sqrt{x^3 - 1} \Longleftrightarrow x = \sqrt[3]{t^2 + 1}$.

$$\int_{1}^{\sqrt[3]{2}} x^{5} \cdot \sqrt{x^{3} - 1} \, dx = \int_{0}^{1} (t^{2} + 1)^{\frac{5}{3}} \cdot t \cdot \frac{2t}{3} (t^{2} + 1)^{-\frac{2}{3}} \, dt = \frac{2}{3} \int_{0}^{1} t^{2} (t^{2} + 1) \, dt \, .$$

On développe $t^2(t^2+1)=t^4+t^2$ et on obtient

$$\int_{1}^{\sqrt[3]{2}} x^{5} \cdot \sqrt{x^{3} - 1} \, dx = \frac{2}{3} \left[\frac{t^{5}}{5} + \frac{t^{3}}{3} \right]_{0}^{1} = \frac{16}{45}$$