Examen - Session 1 CALCULUS 1

Les calculatrices et les documents sont interdits.

(Barème=3.5+3+2.5+5+6.5 points)

- 1) On veut résoudre pour $x \in \mathbb{R}$: $\cos(x) + \sin(x) = \sqrt{2}\cos(2x)$ (**).
 - a) Rappeler ce que valent $\cos\left(\frac{\pi}{4}\right)$ et $\sin\left(\frac{\pi}{4}\right)$.
 - b) En déduire que pour $x \in \mathbb{R}$, on a

$$\cos(x) + \sin(x) = \sqrt{2}\cos(2x) \iff \cos\left(x - \frac{\pi}{4}\right) = \cos(2x).$$

- c) Résoudre (**).
- 2) Calculer les limites suivantes:

•
$$\lim_{x \to +\infty} \frac{1 + x - 2x^2}{3x^2 - 2}$$
 •
$$\lim_{x \to \frac{\pi}{2}^-} \tan(x)$$
 •
$$\lim_{x \to +\infty} \left(\sqrt{x^2 + 4x} - x\right)$$

- 3) On considère $f(x) = e^{\sin(x)}$.
 - a) Sur quel intervalle f est-elle dérivable? Calculer f' sur cet intervalle.
 - b) Déterminer l'équation de la tangente à la courbe représentative de f au point d'abscisse 0.
- 4) Soit f la fonction: $t \in]-1, +\infty[\longmapsto f(t) = \ln(1+t)$
 - a) Calculer f'(t) pour $t \in]-1, +\infty[$, puis justifier que pour tout $t \in [0, +\infty[$, on a $0 \le f'(t) \le 1$.
- b) A l'aide de l'inégalité des accroissements finis, montrer: $\forall u \in \mathbb{R}^+$, $\ln(1+u) \leq u$. (on prendra particulièrement soin à la rédaction pour justifier comment on applique ce théorème)
 - c) En déduire que pour x > 0 et $\alpha \ge 0$, on a $\left(1 + \frac{\alpha}{x}\right)^x \le e^{\alpha}$.
 - d) (Cette question n'utilise pas les précédentes) Calculer $\lim_{x\to +\infty} \left(1+\frac{\alpha}{x}\right)^x$ où $\alpha\geqslant 0$.
- 5) a) Calculer les intégrales suivantes:
- $\int_0^1 \sqrt{x} \, dx$ $\int_0^{\frac{\pi}{4}} \tan(x) \, dx$ $\int_0^{\frac{\pi}{2}} x \sin(x) \, dx$
 - b) Calculer $I = \int_0^{\frac{1}{\sqrt{2}}} \frac{x+1}{\sqrt{1-x^2}} dx$ en effectuant le changement de variable $x = \sin(t)$.