Licence de Mathématiques. Université d'Artois. 17 juin 2014. Durée 3h

EXAMEN - session 2 ANALYSE 4

Les calculatrices et les documents sont interdits. La rédaction sera prise en compte dans la notation.

Cours-Applications. (9 points)

- 1) Donner les développements en série entière des fonctions suivantes et préciser le rayon de convergence.
 - (a) ch(x)
- (b) $\sin(x)$
- $(c) \quad \frac{x}{(1-x)^2}$
- (d) $\arcsin(x)$
- 2) Déterminer la limite de la suite suivante (justifier au passage son existence), définie pour $n \ge 1$ par $S_n = \sum_{k=1}^n \frac{n^2}{(n+k)(n^2+k^2)}$.
 - 3) Soit $f:[0,1] \to \mathbb{R}$ continue. On considère $F: x \in \mathbb{R} \longmapsto \int_0^1 f(t) \mathrm{e}^{-xt} \ dt$

Montrer que F est effectivement définie et de classe \mathscr{C}^1 . Que vaut sa dérivée?

- 4) Soient I un intervalle (non trivial) et $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions continues sur I: $f_n:I\to\mathbb{C}$. On suppose que cette suite converge uniformément, sur I, vers une fonction $f:I\to\mathbb{C}$.
 - a) Que peut-on dire de f?
 - b) Démontrer ce résultat.

Exercice 1. (5 points)

On fixe $u \in]0, \pi[$ et on considère la fonction 2π -périodique f qui coincide avec la fonction indicatrice de [-u, u] sur $[-\pi, \pi[$ (autrement dit la fonction qui vaut 1 sur [-u, u] et 0 sur $[-\pi, \pi[\setminus [-u, u])$.

- 1) Calculer les coefficients de Fourier de f.
- 2) En déduire $\sum_{n=1}^{+\infty} \left(\frac{\sin(nu)}{n} \right)^2$.

- 3) Retrouver que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$.
- 4) En intégrant la relation obtenu au 2. sur $[0, \pi/2]$, trouver $\sum_{k=0}^{+\infty} \frac{(-1)^k}{(2k+1)^3}$.

Exercice 2. (3 points)

Calculer

$$\iint_{\mathcal{Q}} \frac{x+y}{\left(x^2+y^2\right)\left(x^2+y^2+1\right)} \, dxdy$$

οù

$$\mathscr{D} = \left\{ (x, y) \in \mathbb{R}^+ \times \mathbb{R}^+ \mid x + y \leqslant \sqrt{2} \quad et \quad x^2 + y^2 \geqslant 1 \right\}$$

Exercice 3.(3 points)

Soit $(P_n)_{n\in\mathbb{N}}$ une suite de fonctions polynômes (réels), uniformément convergente sur \mathbb{R} . On veut montrer que nécessairement la limite est un polynôme.

- 1) Écrire le critère de Cauchy uniforme.
- 2) En déduire qu'à partir d'un certain rang N, les polynômes P_n et P_N diffèrent d'une constante : autement dit, pour $n \in \mathbb{N}$, il existe $a_n \in \mathbb{R}$ tel que $P_n = P_N + a_n$.
 - 3) Conclure.

Exercice 4. (5 points)

Soient $\alpha \in \mathbb{R}$ et $(f_n)_{n \ge 1}$ une suite de fonctions définie pour tout $x \in \mathbb{R}^+$ par

$$f_n(x) = \frac{2n^{\alpha}x}{1 + n^2x^2}$$

- 1) Etudier la convergence simple de $(f_n)_{n\geqslant 1}$ en fonction de α .
- 2) On suppose que $\alpha < 2$.
 - a) Etudier la convergence uniforme de $(f_n)_{n\in\mathbb{N}}$ sur \mathbb{R}^+ en fonction de α .
- b) Etudier la convergence simple de la série de terme général de f_n sur \mathbb{R}^+ en fonction de α .
- c) Etudier la convergence normale de la série de terme général de f_n sur \mathbb{R}^+ en fonction de α .
 - d) On suppose que $\alpha \in [0, 2[$. On note $S(x) = \sum_{n=1}^{+\infty} f_n(x)$ pour $x \ge 0$.
 - (i) Pour tout $N \ge 1$, justifier que $S\left(\frac{1}{N}\right) \ge \frac{1}{N} \sum_{n=1}^{N} \frac{2}{1 + \frac{n^2}{N^2}}$.
 - (ii) En déduire pour quels α la convergence de la série est uniforme sur \mathbb{R}^+ .